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The problem has been solved of simultaneous heat and momentum transfer in an entrance region 
of a heat exchanger for liquids with highly temperature-dependent viscosity. The method of ther
mal boundary layer has been applied using a linear approximation of the, temperature and a velo
city profile corresponding precisely to the temperature. A solution to the boundary layer equa
tion has been outlined and explicit expressions introduced for heat transfer and pressure drop 
valid for short exchangers with a thin boundary layer. 

Heat transfer under forced convection into a liquid flowing in a tube of different wall temper
ature may be usually described by the equation 

oT [o
2

T 1 oTJ 
(}C Vx- = k - + - - , 

p ox or2 r or 
(1) 

with the boundary conditions: T = T0 for x = 0, and T = T w for r = R and x > 0. (2), (3) 
Even in cases when vx depends both on rand the axial coordinate x one may often neglect 

the effect of the radial velocity component and accept Eq. (J). Solution of this equation mandates 
some numerical method, mostly that of finite differences. 

For short exchangers (where x < 0·1 R 2 ocpU/ k) it is convenient to utilize the method of thermal 
boundary layer based on assumption that the resistance to heat transfer occurs only in a thin 
layer adherring to the wall. The set of Eqs (1) - (3) may then be supplemented by another condi
tion , namely 

T = T0 and oTjor = 0 for r = R - o, (4) 

permitting a simplified solution to Eq. (/); the function o(x) is calculated afterwards. The results 
obtained by exact solution of the thermal boundary layer equation (provided that the temper
ature profile in the boundary layer is given by the first eigenfunction of an equation obtained 
from Eq. (J) (ref. 1 •

2
) by separation) are in an excellent agreement with the numerical results of 

the complete set of Eqs (1) - (3) both for isoviscous3 and non-isoviscous4 flow. The given approach 
however, requires numerical approach even to the boundary layer although substantially simpler1

•
2 

than that for the complete set. A principal advantage of the boundary layer method should be the 
possibility of obtaining by simple mathematical means an approximate, yet reliable solution. 

Part V of the series Heat Transfer in Laminar Flow; Part IV: This Journal38, 3094 (1973). 
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Such a solution of non-isoviscous heat transfer by the boundary layer method has been attempted 
by Murakami 5 who used a very close approximation of the temperature profile (third order power 
expression) but his superimposed velocity profile resulted in obviously unsound conclusions. 
The submitted paper though utilizing a rough assumption about the temperature profile (linear 
profile within the boundary layer) uses a velocity profile that corresponds precisely to the viscosity 
and shear stress distribution. According to our experience with isoviscous heat transfer this 
assumption provides a reliable fit to the conditions in short exchangers; the systematic error 
amounts to about 10%. The proposed method enables to solve simultaneously the problem 
of coupled heat and momentum transfer analytically with an explicit expression of the results. 

A Solution of the Velocity and Temperature Profile in the Boundary Layer 

The course of the shear stress across the tube is given by a linear expression as 

where r 5 is the shear stress on the wall 

r. = t(dpfdx) R. 

The velocity gradient in a Newtonian liquid is 

dv,fdr = - r/J-L(r). 

(5) 

(6) 

(7) 

In accord with the concept of the thermal boundary layer of thickness <> with the 
temperature varying linearly between Tw and T0 

T = Tw + (T0 - Tw) (R - r)/<> for r ~ R - <> 

T = T0 for r ~ R - <> , 

the course of viscosity in the boundary layer is given by 

J1 = Jlw exp [lfr(R- r)/<>J. 

(8) 

(9) 

(10) 

A criterion of isoviscousness, lfr, is determined from the temperature dependence 
of the viscosity expressed in the investigated range with the aid of an empirical 
formula 

J1 = .Uo exp (- AT) . (11) 

The dimensionless variables are introduced by 

w = v,fu, b = (dpfdx) R 2 /(8.uwV), Y = (R - r)/R, Yo = <>/R · 

(12)-(15) 
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Combining the definitions (12)-(15) with Eqs (5)-(10) one obtains two different ial 
equations for the velocity profile. For their solution one uses the " no-slip" condition 
on the wall 

w = 0 for y = 0 (16) 

and the condition of constant flow rate 

{ w( 1 - y) d y = 1- . (17) 

On defining the auxiliary variables u 1 and u2 as 

u,(y) = w(y)f(4b) for y ~Yo, uz(y) = w(y)f(4b) foF. y ~Yo. (18), (19) 

the solution of the differential equations may be expressed in terms of these variables 
as 

u1(y) = fY(l- y) exp(t/Jyjy0) dy, u2(y) = u1(y0) + fY (1- y) exp( -t/J)dy. 
0 Yo 

(20), (21) 

Denoting further by 11 , 12 , 13 the following definite integrals 

11 = J:ou,(y) Y/Yo {l - y) dy, 

l2 = J1 

u2(Y) (l - y) dy, 
Yo 

the velocity, pressure drop and cup-mixing temperature can be expressed as 

w(y) = u1(y)/(12 + 13) for y ~Yo, 

w(y) = u2(y)/(12 + 13 ) for y ~ Yo, 

b = 1/[8(12 + 13)] , 

tM = (1 1 + 12)/(12 + 13). 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 
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In the calculation of the thickness of the thermal boundary layer, y0 , as a function 
of y we use the integral balance on heat , which for the given temperature gradient 
in the boundary layer may be written in dimensionless form as 

(29) 
from which 

(30) 

Thus it suffices to differentiate the function t M(Yo) determined from Eq. (29) and the 
result is obtained by inversion of the function calculated by integrating Eq. (30). 

Asymptotic Solution for Low z 

Each integration in Eqs (20) -(24) may be carried out analytically. Moreover, if 
one neglects in the limit y 0 ~ 0 higher powers of y0 the expressions in Eqs (25) -(28) 
may be given by particularly simple functions of y 0 and t/J. Thus then dimensionless 
cup-mixing temperature is 

tM = 1 - !Y~ (1 - f(t/J)], (31) 
where 

(32) 

On substituting Eq. (31) into Eq. (30), integrating and inverting we get 

[ 
9z ]1/3 

Yo = 4[1 - f(t/1)] 
(33) 

The last equation permits the variables calculated for y0 ~ 0 from Eqs (27) and (28) 
to be expressed as functions of z: 

(34) 

b = exp t/J{l - z1
'

3 4(9/4) 113[1 + (l/t/1)- (exp tfJ/tfJ)]/[1 - f(t/1)] 1
'

3
} -

1
. (35) 

An interesting result is the value of the coefficient r:x defined as 

d In (Nunoniso/Nuiso)/d In(~) = - In [1 - f(t/J)]/(3t/J). (36) 
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The course of this coefficient is plotted in Fig. 3. As it may be seen IX does not depend 
strongly on t/1 and hence one can accept the following relation 

(37) 

where 0·25 is the value of IX at t/1--+ 0. The high value of the exponent (0·25) ,instead 

FIG.} 

Dimensionless Cup-Mixing Temperature 
unde~ Non-lsoviscous, Flow in Short Ex
changers 
-- Solution by thermal boundary 

layer method1 •2, - -- approximative 
solution for low z (Eq. (34)), - . - . - . -
numerical solution by finite difference meth
od a due to Christiansen, Jensen and Tao4
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Kwant9
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Dimensionless Local Pressure Drop as a 
Function of z 
-- Solution by boundary layer meth

od1 ·2 - - - approximative solution for 
low z (Eq. (35)), - . - . - . - pressure drop 
corresponding to inlet viscosity. Figures on 
curves indicate values of If/ . 
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FIG. 3 

Calculated Exponent of the Sieder-Tate correction as a Function of If/ for z --* 0. 
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of the more usual IX = 0·14 appearing in the correlation of the Sieder-Tate type6 

(Eq. (37)) will be suitable just for the exchangers with short time of contact (small z). 
This is e.g. the case of mixed vessels with laminar regime near the wall (this occurs 
even for fairly high values of the Reynolds number for mixing), where, as mentioned 
by Uhl 7

, the experimentally found values of the exponent were IX = 0·24 and IX = 0·25. 
The often used value IX = 0·14 stems from experiments of Sieder and Tate for long 
tubular exchangers6

. 

DISCUSSION 

1) The validity of the above solution may be judged for instance from comparison 
of Eq. (34) for isoviscous conditions: 

(34a) 

with the exact solution due to Leveque8 

(38) 

The relative error dtM/dz amounts to 10·5%. 

2) The agreement with the solution of non-isoviscous heat transfer may be judged 
from Figs 1 and 2 plotting the results obtained by solving the boundary layer equa
tion under more realistic assumptions 1

•
2

. As it is apparent the results of the complete 
set Eqs (1)-(3) and (5)-(7)4

•
9 obtained by a numerical technique comport well 

with those of the presented method for higher values of z. At low values of z (where 
y0 becomes comparable with the increment of the numerical computational grid) 
the numerical results lose their accuracy, while Eqs (31) -(37) hold in this very region. 

3) The whole procedure can be repeated for non-Newtonian liquids, whose non
isoviscous flow is governed by 

The procedure becomes particularly simple if 1/n is an integer10
. 

The result is 

(39) 

(40) 

where the correction of non-Newtonian behaviour is identical to that derived by 
Pigford 11 • Furthermore, this case confirms theoretically the appropriateness of the 
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definition of the parameter A for non-Newtonian liquids as 

A= olnryl 
Ot r=const. 

(41) 

since it enables the effects of non-Newtonian behaviour and that of non-isoviscous
ness on heat transfer to be separated. 

4) The above presented method is suitable, as it is apparent from Figs 1 and 2, 
for ~xchangers satisfying z ~ 0·001. The other stipulation is that z ~ Pe- 312 for we 
could neglect the effect of axial conduction on the over-all heat transfer12

. Under 
low values of Pe (e.g. for slow motion of liquid metals in capillaries) even the boundary 
conditions in Eqs (2) and (3) are difficult to realize. From the continuity equation 
and the velocity profiles (25) it further follows that for~ exchangers having 
z ~ Jl/t I Pe- 3

/
2 one has to take into consideration also the effects of radial velocity 

and inertia forces. 

Nevertheless, the range Pe- 3
/

2 ~ z ~ 0·001 into which the presented results are 
confined covers a broad class of exchangers of practical interest; as has been shown 
some of the results hold not only for flow in tubes but also for agitated vessels used 
for heat transfer operations. 

LIST OF SYMBOLS 

A 
b 

material constant, Eq. (1 1), (41), (deg- 1) 

dimensionless pressure drop 
heat capacity, (cal g- 1 deg- 1) 

function defined by Eq. (32) 
integrals defined by Eqs (22)-(24) 
thermal conductivity, (cal em -l s- 1 deg- 1) 

flow index 
Nunoniso average Nusselt number based on arithmetic average temperature difference 
Nuiso Nusselt number for isoviscous flow 
dpjdx local pressure drop, (gem- 3 s- 2

) 

Pe = 2cPVR/k Peclet number 
radial coordinate, (em) 

R radius of tube, (em) 
T temperature, (deg C) 
T0 inlet temperature ofliquid, (deg C) 
T w wall temperature, ( deg C) 
tM = (TM- Tw)/(T0 - Tw) dimensionlessscup-mixingtemperature 
T M cup-mixing temperature, (deg C) 
U average velocity, (em s- 1

) 

u1 , u2 auxiliary functions defines by Eqs. (18), (/9) 
vx axial component of velocity, (ems - 1

) 

w dimensionless velocity 
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axial coordinate of examined cross section, (em) 
y dimensionless distance from wall 
J'o dimensionless thickness of boundary layer 
z = 2xj (R Pe) dimensionless axial coordinate 

exponent of Sider-Tate correction, Eq. (36) 
thickness of thermal boundary layer, (em) 
apparent viscosity of non-Newtonian liquid (gem - 1 s- 1

) 

170 material constant, (gem - 1 s2
- ") 

J.1 viscosity, (g cm- 1 s- 1) 

110 material constant, (gem- 1 s- 1
) 

ttM viscosity at temperature TM, (gem- 1 s- 1
) 

llw viscosity at temperature T W• (g em- 1 s - 1
) 

density, (gem - 3
) 

shear stress, (g em - 1 s- 2 ) 

rw wall shear stress, (gem - 1 s-
If/ = A(Tw- T0 ) criterion of non-isoviscousness 
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